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ABSTRACT

Software security vulnerabilities are discovered on an almost daily basis and have caused substan-

tial damage. It is vital to be able to detect and resolve them as early as possible. One of early detection

approaches is to consult with the prior known vulnerabilities and corresponding patches. With the hy-

pothesis that recurring software vulnerabilities are due to software reuse, we conducted an empirical

study on several databases for security vulnerabilities and found several recurring and similar software

security vulnerabilities occurring in different software systems. Most of recurring vulnerabilities occur

in the systems that reuse source code, share libraries/APIs or reuse at a higher level of abstraction (e.g.

algorithms, protocols, or specifications).

The finding suggests that one could effectively detect and resolve some unreported vulnerabilities

in one software system by consulting the prior known and reported vulnerabilities in the other systems

that reuse/share source code, libraries/APIs, or specifications. To help developers with this task, we

developed SecureSync, a supporting tool to automatically detect recurring software vulnerabilities in

different systems that share source code or libraries, which are the most frequent types of recurring

vulnerabilities. SecureSync is designed to work with a semi-automatically built knowledge base of the

prior known/reported vulnerabilities, including the corresponding systems, libraries, and vulnerable

and patched code. To help developers check and fix the vulnerable code, SecureSync also provides

some suggestions such as adding missed function calls, adding checking of an input/output of a function

call, replacing the operators in an expression, etc.

We conducted an evaluation on 60 vulnerabilities of with the totals of 176 releases in 119 open-

source software systems. The result shows that SecureSync is able to detect recurring vulnerabilities

with high accuracy and to identify several vulnerable code locations that are not yet reported or fixed

even in mature systems.
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CHAPTER 1. INTRODUCTION

New software security vulnerabilities are discovered on an almost daily basis [4]. Attacks against

computer software, which is one of the key infrastructures of our modern society and economies, can

cause substantial damage. For example, according to the CSI Computer Crime and Security Survey

2008 [30], 522 US companies were reported to have lost in total $3.5 billion per year due to the

attacks on critical business software applications. Many systems are developed, deployed, and used

over years that contain significant security weaknesses. Over 90% of security incidents reported to the

Computer Emergency Response Team (CERT) Coordination Center result from software defects [17].

Because late corrections of errors could cost up to 200 times as much as early correction [23], it is

vital to be able to detect and resolve them as early as possible. One of early detection approaches is

to consult with the prior known vulnerabilities and corresponding patches. In current practice, known

software security vulnerabilities and/or patches are often reported in public databases (e.g. National

Vulnerability Database (NVD) [17], Common Vulnerabilities and Exposures database (CVE) [4]), or

on public websites of specific software applications.

With the hypothesis that recurring software vulnerabilities are due to software reuse, we conducted

an empirical study on several databases for security vulnerabilities including NVD [17], CVE [4], and

others. We found several recurring and similar software security vulnerabilities occurring in different

software systems. Most of recurring vulnerabilities occur in the systems that reuse source code (e.g.

having the same code base, deriving from the same source, or being developed on top of a common

framework). That is, a system has some vulnerable code fragments. Then, such code fragments are

reused in other systems (e.g. by copy-and-paste practice, by branching/duplicating the code base and

then developing new versions or new systems). Patches in one of such systems were late propagated

into other systems. Due to the reuse of source code, the recurring vulnerable code fragments are
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identical or highly similar in code structure and names of function calls, variables, constants, literals,

or operators. Let us call them Type 1.

Another type of recurring vulnerabilities occurs across different systems that share APIs/libraries

(Type 2). For example, such systems use the same function from a library and have the same errors in

API usages, e.g. missing or wrongly checking the input/output of the function; missing or incorrectly

ordering function calls, etc. The corresponding vulnerable code fragments on such systems tend to

misuse the same APIs in a similar manner, e.g., using the incorrect orders, missing step(s) in function

calls, missing the same checking statements, incorrectly using the same comparison expression, etc.

There are also some systems having recurring or similar vulnerabilities due to the reuse at a higher

level of abstraction. For example, such systems share the same algorithms, protocols, specifications,

standards, and then have the same bugs or programming faults. We call such recurring vulnerabilities

Type 3. The examples and detailed results of all three types will be discussed in Chapter 3.

This finding suggests that one could effectively detect and resolve some unreported vulnerabilities

in one software system by consulting the prior known and reported vulnerabilities in the other sys-

tems that reuse/share source code, libraries, or specifications. To help developers with this task, we

developed SecureSync, a supporting tool that is able to automatically detect recurring software vul-

nerabilities in different systems that share source code or libraries, which are the most frequent types

of recurring vulnerabilities. Detecting recurring vulnerabilities in systems reusing at higher levels of

abstraction will be investigated in future work.

SecureSync is designed to work with a semi-automatically built knowledge base of the prior known/re-

ported vulnerabilities, including the corresponding systems, libraries, and vulnerable and patched code.

It could support detecting and resolving vulnerabilities in the two following scenarios:

1. Given a vulnerability report in a system A with corresponding vulnerable and patched code,

SecureSync analyzes the patches and stores the information in its knowledge base. Then, via Google

Code Search [6], it searches for all other systems B that share source code and libraries with A, checks

if B has the similarly vulnerable code, and reports such locations (if any).

2. Given a system X for analysis, SecureSync will check whether X reuses some code fragments

or libraries with another system Y in its knowledge base. Then if the shared code in X is sufficiently
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similar to the vulnerable code in Y , SecureSync will report it to be likely vulnerable and point out the

vulnerable location(s).

In those scenarios, to help developers check and fix the vulnerable code, SecureSync also provides

some suggestions such as adding missed function calls, adding checking of input/output before or after

a call, replacing the operators in an expression, etc.

The key technical goals of SecureSync are how to represent vulnerable and patched code and how

to detect code fragments that are similar to vulnerable ones. We have developed two core techniques for

those problems to address two kinds of recurring vulnerabilities. For recurring vulnerabilities of Type

1 (reusing source code), SecureSync represents vulnerable code fragments as Abstract Syntax Tree

(AST)-like structures, with the labels of nodes representing both node types and node attributes. For

example, if a node represents a function call, its label will include the node type FUNCTION CALL, the

function name, and the parameter list. The similarity of code fragments is measured by the similarity

of structures of such labeled trees. Our prior technique, Exas [44, 49], is used to approximate structure

information of labeled trees and graphs by vectors and to measure the similarity of such trees via vector

distance.

For recurring vulnerabilities of Type 2 (systems sharing libraries), the traditional code clone detec-

tion techniques do not work in these cases because the similarity measurement must involve program

semantics such as API usages and relevant semantic information. SecureSync represents vulnerable

code fragments as graphs, with the nodes representing function calls, condition checking blocks (as

control nodes) in statements such as if, while, or for, and operations such as ==, !, or <. Labels of

nodes include their types and names. The edges represent the relations between nodes, e.g. control/data

dependencies, and orders of function calls. The similarity of such graphs is measured based on their

largest common subgraphs.

To improve the performance, SecureSync also uses several filtering techniques. For example, it

uses text-based filtering to keep only source files containing identifiers/tokens related to function names

appearing in vulnerable code in its knowledge base. It also uses locality-sensitive hashing (LSH) [20]

to perform fast searching for similar trees in its knowledge base: only trees having the same hash

code are compared to each other. SecureSync uses set-based filtering to find the candidates of Type 2:
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only the graphs containing the nodes having the same/similar labels with the nodes of the graphs in its

knowledge base are kept as candidates for comparison.

We conducted an evaluation on 48 and 12 vulnerabilities of Type 1 and Type 2 with the totals of 51

and 125 releases, respectively, in 119 open-source software systems. The result shows that SecureSync

is highly accurate. It is able to correctly locate most of locations of vulnerable code in the systems that

share source code/libraries with the systems in its knowledge base. Interestingly, it detects 90 releases

having potentially vulnerable code locations (fragments having vulnerabilities) that, to the best of our

knowledge, have not been detected, reported, or patched yet even in mature systems. Based on the

recommendations from our tool, we produced the patches for such vulnerabilities and reported to the

developers of those systems. Some of such vulnerabilities and patches were actually confirmed. We

still wait for replies on others.

The contribution of this thesis includes:

1. An empirical study that confirms the existence of recurring/similar software vulnerabilities and

our aforementioned software reuse hypothesis, and provides us insights on their characteristics;

2. Two representations and algorithms to detect recurring vulnerabilities on systems sharing source

code and/or APIs/libraries;

3. SecureSync: An automatic prototype tool that detects recurring vulnerabilities and recommends

the resolution for them;

4. An empirical evaluation of our tool on real-world datasets of vulnerabilities and systems shows

its accuracy and usefulness.

The outline of the thesis is as follow: Chapter 2 discusses about the literature review. Chapter 3

reports our empirical study on recurring vulnerabilities. Chapter 4 and Chapter 5 present the overview

of our approach and detailed techniques. The empirical evaluation is in Chapter 6. Finally, conclusions

appear last in Chapter 7.
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CHAPTER 2. BACKGROUND

First, we discuss about the terminology and concepts used within the thesis. Second, we present

related approaches in bug detection and localization. Finally, an overview of the current state of open

software security databases appears last in this chapter.

2.1 Terminology and Concepts

A system is a software product, program, module, or library under investigation (e.g. Firefox,

OpenSSL, etc). A release refers to a specific release/version of a software system (e.g. Firefox 3.0.5,

OpenSSL 0.9.8).

A software bug is the common term used to describe an error, flaw, mistake, failure, or fault in a

computer program or system that produces an incorrect or unexpected result, or causes it to behave in

unintended ways [13].

A patch is a piece of software designed to fix problems with, or update a computer program or

its supporting data. This includes fixing security vulnerabilities and other bugs, and improving the

usability or performance [11].

A vulnerability is an exploitable software fault occurring on specific release(s) of a system. For

example, CVE-2008-5023 reported a vulnerability in security checks on Firefox 3.0.0 to 3.0.4. A

software vulnerability can be caused by a software bug which may allow an attacker to misuse an

application.

A recurring vulnerability is a vulnerability that occurs and should be fixed/patched on at least two

different releases (of the same or different systems). This term also refers to a group of vulnerabilities

having the same causes on different systems/releases. Examples of recurring vulnerabilities are in

Chapter 3.
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2.2 Bug Detection and Localization

Our research is closely related to static approaches to detect similar and recurring bugs. Static

approaches could be categorized into two types: rule/pattern-based and peer-based. The strategy in

pattern-based approaches is first to detect the correct code patterns via mining frequent code/usages, via

mining rules from existing code, or predefined rules. The anomaly usages deviated from such patterns

are considered as potential bugs. In contrast, a peer-based approach attempts to match the code frag-

ment under investigation against its databases of cases and provides a fix recommendation if a match

occurs. Peer-based approach was chosen for SecureSync because a vulnerability must be detected early

even though it does not necessarily repeat frequently yet. It is desirable that a vulnerability is detected

even if it matches with one case in the past. SecureSync efficiently stores only features for each case.

Several bug finding approaches are based on mining of code patterns [32,38,55–57]. Sun et al. [54]

present a template- and rule-based approach to automatically propagate bug fixes. Their approach

supports some pre-defined templates/rules (e.g. orders of pairs of method calls, condition checking

around the calls) and requires a fix to be extracted/expressed as rules in order to propagate it. Other

tools also detect pre-defined, common bug patterns using syntactic pattern matching [26,32]. In contrast

to those pattern-based approaches, SecureSync is based on our general graph-based representation for

API-related code and its feature extraction that could support any vulnerable and corresponding patched

code.

JADET [56] and GrouMiner [46] perform mining object usage patterns and detect the violations

as potential bugs. Several approaches mine usage patterns in term of the orders of pairs of method

calls [18, 38, 57], or association rules [53, 55]. Error-handling bugs are detected via mining sequence

association rules [55]. Chang et al. [24] find patterns on condition nodes on program dependence graphs

and detect bugs involving negligent conditions. Hipikat [27] extracts lexical information while building

the project’s memories and recommends relevant artifacts. Song et al. [53] detect association rules

between six types of bugs from the project’s history for bug prediction. However, those approaches

focus only on specific sets of patterns and bugs (object usages [56], error-handling [55], condition

checking [24]). BugMem [35] uses a textual difference approach to identify changed texts and detects

similar bugs. SecureSync captures better the contexts of API usages with its graph representation,
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thus, it could detect any type of API-related recurring vulnerabilities more precisely and generally

than specific sets of bug patterns. It is designed toward API better than GrouMiner [46] with data and

operator nodes, and their relations with function calls.

FixWizard [45] is a peer-based approach for detecting recurring bugs. It relies on code peers, i.e.

methods/classes with similar interactions in the same system, thus, cannot work across systems. Patch

Miner [12] finds all code snapshots with similar snippets (i.e. cloned code) to the fragment that was

fixed. CP-Miner [37] mines frequent subsequences of tokens to detect bugs caused by inconsistent

editing to cloned code. Jiang et al. [34] detect clone-related bugs via formulating context-based incon-

sistencies. Existing supports for consistent editing of cloned code are limited to interactive synchroniza-

tion in editors such as CloneTracker [28]. Compared to clone-related bug detection approaches [34,37],

our detection for code-reused vulnerabilities could also handle non-continuous clones (e.g. source code

in Figure 3.1 and Figure 3.2). More importantly, our graph-based representation and feature extraction

are more specialized toward finding fragments with similar API usages, and they are more flexible to

support the detection of API-related bugs across systems.

Several approaches have been proposed to help users localize buggy code areas [22,31,36,40,42].

Some leverage the project’s historical information: the amount of changed LOC over the total in a time

period [42], frequently/recently modified/fixed modules [31], code co-changes and bug locality [36],

change and complexity metrics [41, 48, 52], social network among developers [21, 22, 51, 58], etc.

In software security, vulnerability prediction approaches that relied on projects’ components and

history include [29, 43]. Other researchers study the characteristics of vulnerabilities via discovery

rates [25], or time and efforts of patching [19]. Longstaff [39] defined a vulnerability classification

called Ease of Exploit Classification, based on the difficulty of exploitation. In general, none of ex-

isting software security approaches has studied recurring software security vulnerabilities and their

characteristics.

2.3 Vulnerability Databases

There are many publicly available vulnerability databases in the Internet including, but not limited

to, Common Vulnerabilities and Exposure (CVE) [4], Internet Security Systems (ISS) [7], National
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Vulnerability Database (NVD) [17], The Open Source Vulnerability Database (ovsbd) [15]. There is

also a suite of selected open standards (The Security Content Automation Protocol - SCAP) that enu-

merate software flaws, security related configuration issues, and product names; measure systems to

determine the presence of vulnerabilities; and provide mechanisms to rank the results of these mea-

surements in order to evaluate the impacts of the discovered security issues. SCAP standards [16] are

comprised of Common Vulnerabilities and Exposures (CVE) [4], Common Configuration Enumera-

tion (CCE) [2], Common Platform Enumeration (CPE) [3], Common Vulnerability Scoring System

(CVSS) [5], Extensible Configuration Checklist Description Format (XCCDF) [14], and Open Vulner-

ability and Assessment Language (OVAL) [10].
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CHAPTER 3. EMPIRICAL STUDY

3.1 Hypotheses and Process

Hypotheses. In this study, our research is based on the philosophy that similar code tends to have

similar properties. In the context of this thesis, the similar properties are software bugs, programming

flaws, or vulnerabilities. Due to software reuse, in reality, there exist many systems that have similar

code and/or share libraries/components. For example, they could be developed from a common frame-

work, share some code fragments due to the copy-and-paste programming practice, use the same API

libraries, or implement the same algorithms or specifications, etc. Therefore, we make hypotheses that

(H1) there exist software vulnerabilities recurring in different systems, and (H2) one of the causes of

such existence is software reuse. In this study, we use the following important terms.

Analysis Process. To confirm those two hypotheses, we considered around 3,000 vulnerability

reports in several security databases: National Vulnerability Database (NVD [17]), Open Source Com-

puter Emergency Response Team Advisories (oCERT) [9], Mozilla Foundation Security Advisories

(MFSA [8]), and Apache Security Team (ASF) [1]. Generally, each report describes a vulnerability,

thus, a recurring vulnerability would be described in multiple reports. Sometimes, one report (such as

in oCERT) describes more than one recurring vulnerabilities. Since it is impossible to manually ana-

lyze all those reports, we used a textual analysis technique to cluster them into different groups having

similar textual contents and manually read such groups. Interestingly, we found some groups which re-

ally report recurring vulnerabilities. To verify such recurring vulnerabilities and gain more knowledge

about them (e.g. causes and patches), we also collected and analyzed all available source code, bug

reports, discussions relevant to them. Let us discuss representative examples and then present detailed

results.
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PRBool nsXBLBinding::AllowScripts() {
...
JSContext* cx = (JSContext*) context->GetNativeContext();
nsCOMPtr<nsIDocument> ourDocument;
mPrototypeBinding->XBLDocumentInfo()->GetDocument(getter_AddRefs(ourDocument));

/* Vulnerable code: allows remote attackers to bypass the protection mechanism for codebase
principals and execute arbitrary script via the -moz-binding CSS property in a signed
JAR file */

PRBool canExecute;
nsresult rv = mgr->CanExecuteScripts(cx, ourDocument->NodePrincipal(), &canExecute);
return NS_SUCCEEDED(rv) && canExecute;

}

Figure 3.1 Vulnerable Code in Firefox 3.0.3

PRBool nsXBLBinding::AllowScripts() {
...
JSContext* cx = (JSContext*) context->GetNativeContext();
nsCOMPtr<nsIDocument> ourDocument;
mPrototypeBinding->XBLDocumentInfo()->GetDocument(getter_AddRefs(ourDocument));

nsIPrincipal* principal = ourDocument->GetPrincipal();
if (!principal){
return PR_FALSE;
}

// Similarly vulnerable code
PRBool canExecute;
nsresult rv = mgr->CanExecuteScripts(cx, principal, &canExecute);
return NS_SUCCEEDED(rv) && canExecute;

}

Figure 3.2 Vulnerable Code in SeaMonkey 1.1.12

3.2 Representative Examples

Example 1. In CVE-2008-5023, it is reported that there is a vulnerability which “allows remote at-

tackers to bypass the protection mechanism for codebase principals and execute arbitrary script via

the -moz-binding CSS property in a signed JAR file”. Importantly, this vulnerability recurs in different

software systems: all versions of Firefox 3.x before 3.0.4, Firefox 2.x before 2.0.0.18, and SeaMonkey

1.x before 1.1.13 have this vulnerability.

Figure 3.1 and Figure 3.2 show the vulnerable code fragments extracted from Firefox 3.0.3 and

SeaMonkey 1.1.12. Figure 3.3 and Figure 3.4 show the corresponding patched code in Firefox 3.0.4

and SeaMonkey 1.1.13. As we could see, the vulnerable code is patched by adding more checking

mechanisms via two functions GetHasCertificate and Subsumes. Further analyzing, we figure
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PRBool nsXBLBinding::AllowScripts() {
....
JSContext* cx = (JSContext*) context->GetNativeContext();
nsCOMPtr<nsIDocument> ourDocument;
mPrototypeBinding->XBLDocumentInfo()->GetDocument(getter_AddRefs(ourDocument));

// PATCHED CODE ---------------------
PRBool canExecute;
nsresult rv = mgr->CanExecuteScripts(cx, ourDocument->NodePrincipal(), &canExecute);
if (NS_FAILED(rv) || !canExecute) {
return PR_FALSE;

}

PRBool haveCert;
doc->NodePrincipal()->GetHasCertificate(&haveCert);
if (!haveCert){
return PR_TRUE;
}

PRBool subsumes;
rv = ourDocument->NodePrincipal()->Subsumes(doc->NodePrincipal(), &subsumes);
return NS_SUCCEEDED(rv) && subsumes;

}

Figure 3.3 Patched Code in Firefox 3.0.4

out that the vulnerability is recurring due to the reuse of source code. In Figure 3.1 and Figure 3.2, the

vulnerable code fragments are highly similar. Because Firefox and SeaMonkey are developed from the

common framework Mozilla, they largely share source code, including the vulnerable code in those

fragments. Therefore, it causes a recurring vulnerability in those two systems.

This example is a representative example of the recurring vulnerabilities that we classify as Type

1 (denoted by RV1). The vulnerabilities of this type are recurring due to the reuse of source code i.e.

a code fragment in one system has some undetected flaws and is reused in another system. Therefore,

when the flaws are exploited as a vulnerability, the vulnerability is recurring in both systems. In general,

the reuse could be made via copy-and-paste practice, or via branching the whole code base to create a

new version of a system. In other cases, systems could be derived from the same codebase/framework,

but are later independently developed as a new product. Because of reuse, the vulnerable code tends to

be highly similar in texts (e.g. names of called functions, variables, names/values of literals, etc) and in

structure (e.g. the structure of statements, branches, expressions, etc). Due to this nature, those similar

features could be used to identify them.

A special case of Type 1 is related to different releases of a system (e.g. Firefox 2.x and 3.x in this

example). Generally, such versions/releases are developed from the same codebase, e.g. later versions
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PRBool nsXBLBinding::AllowScripts() {
...
JSContext* cx = (JSContext*) context->GetNativeContext();
nsCOMPtr<nsIDocument> ourDocument;
mPrototypeBinding->XBLDocumentInfo()->GetDocument(getter_AddRefs(ourDocument));

nsIPrincipal* principal = ourDocument->GetPrincipal();
if (!principal){
return PR_FALSE;
}

// PATCHED CODE ---------------------
PRBool canExecute;
nsresult rv = mgr->CanExecuteScripts(cx, ourDocument->NodePrincipal(), &canExecute);
if (NS_FAILED(rv) || !canExecute) {
return PR_FALSE;
}

PRBool haveCert;
doc->NodePrincipal()->GetHasCertificate(&haveCert);
if (!haveCert){
return PR_TRUE;
}

PRBool subsumes;
rv = ourDocument->NodePrincipal()->Subsumes(doc->NodePrincipal(), &subsumes);
return NS_SUCCEEDED(rv) && subsumes;

}

Figure 3.4 Patched Code in SeaMonkey 1.1.13

are copied from earlier versions, thus, most likely have the same vulnerable code. When vulnerable

code is fixed in the later versions, it should also be fixed in the earlier versions. This kind of patching

is referred as back-porting.

Example 2. OpenSSL, an open source implementation of the SSL and TLS protocols, provides an

API library named EVP as a high-level interface to its cryptographic functions. As described in

EVP documentation, EVP has a protocol for signature verification, which could be used in the fol-

lowing procedure. First, EVP VerifyInit is called to initialize a verification context object. Then,

EVP VerifyUpdate is used to hash the data for verification into that verification context. Finally,

that data is verified against corresponding public key(s) via EVP VerifyFinal. EVP VerifyFinal

would return one of three values: 1 if the data is verified to be correct; 0 if it is incorrect; and -1 if

there is any failure in the verification process. However, the return value of -1 is overlooked by several

developers. In other words, they might understand that, EVP VerifyFinal would return only two

values: 1 and 0 for correct and incorrect verification. Therefore, in several systems, the flaw state-
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static int crypto_verify() {
...

EVP VerifyInit(&ctx, peer->digest);
EVP VerifyUpdate(&ctx, (u_char *)&ep->tstamp, vallen + 12);

/* Vulnerable code: EVP\_VerifyFinal returns 1: correct, 0: incorrect, and -1: failure.
This expression is false for both 1 and -1, thus, verification failure is mishandled
as correct verification */

if (!EVP VerifyFinal(&ctx, (u_char *)&ep->pkt[i], siglen, pkey))
return (XEVNT_SIG);

...
}

Figure 3.5 Recurring Vulnerability in NTP 4.2.5

int gale_crypto_verify_raw(...) {
...

EVP VerifyInit(&context,EVP_md5());
EVP VerifyUpdate(&context,data.p,data.l);
for (i = 0; is_valid && i < key_count; ++i) {
... //Similarly vulnerable code
if (!EVP VerifyFinal(&context,sigs[i].p,sigs[i].l,key)) {
crypto_i_error();
is_valid = 0;
goto cleanup;

}
}
cleanup: EVP_PKEY_free(key);

}

Figure 3.6 Recurring Vulnerability in Gale 0.99

ment if (!EVP VerifyFinal(...)) is used to check for some error(s) in verification. Thus, when

EVP VerifyFinal returns -1, i.e. a failure occurs in the verification process, the control expression

(!EVP VerifyFinal(...))is false as in the case when 1 is returned. As a result, the program would

behave as if the verification is correct, i.e. it is vulnerable to this exploitation.

From CVE-2009-0021 and CVE-2009-0047, this programming flaw appeared in two systems NTP

and Gale using EVP library, and really caused a recurring vulnerability that “allows remote attackers

to bypass validation of the certificate chain via a malformed SSL/TLS signature for DSA and ECDSA

keys”. Figure 3.5 and Figure 3.6 show the corresponding vulnerable code that we found from NTP

4.2.5 and Gale 0.99. Despite detailed differences, both of them use the signature verification protocol

provided by EVP and incorrectly process the return value of EVP VerifyFinal by the aforementioned

if statement.

We classify this vulnerability into Type 2, i.e. API-shared/reused recurring vulnerability (denoted
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by RV2). The vulnerabilities of this type occur on the systems that share APIs/libraries. Generally,

APIs should be used following a usage protocol specified by API designers. For example, the API

functions must be called in the correct orders; the input/output provided to/returned from API function

calls must be properly checked. However, developers could wrongly use such APIs, i.e. do not follow

the intended protocols or specifications. They could call the functions in an incorrect order, miss

an essential call, pass an unchecked/wrong-typed input parameter, or incorrectly handle the return

values. Since they reuse the same library in different systems, they could make such similar erroneous

usages, thus, create similar faulty code, and make their programs vulnerable to the same or similar

vulnerabilities. Generally, each RV2 is related to a misused API function or protocol.

Example 3. Besides those two types, the other identified recurring vulnerabilities are classified as

Type 3, denoted by RV3. Here is an example of type 3. According to CVE-2006-4339 and CVE-

2006-7140, two systems OpenSSL 0.9.7 and Sun Solaris 9 “when using an RSA key with exponent 3,

removes PKCS-1 padding before generating a hash, which allows remote attackers to forge a PKCS

#1 v1.5 signature that is signed by that RSA key and prevents libike from correctly verifying X.509 and

other certificates that use PKCS #1”. Those two systems realize the same RSA encryption algorithm,

even though with different implementations. Unfortunately, the developers of both systems make the

same mistake in their corresponding implementations of that algorithm, i.e. “removes PKCS-1 padding

before generating a hash”, thus make both systems vulnerable to the same exploitation.

Generally, recurring vulnerabilities of Type 3 occur in the systems with the reuse of artifacts at a

higher level of abstraction. For example, they could implement the same algorithms, specifications, or

same designs to satisfy the same requirements. Then, if their developers made the same implementation

mistakes, or the shared algorithms/specifications had some flaws, the corresponding systems would

have the same or similar vulnerabilities. However, unlike Type 1 and Type 2, vulnerable code of Type

3 is harder to recognize/localize/match in those systems due to the wide varieties of implementation

choices and differences in design, architecture, programming language, etc among systems.
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Database Report Group RV RV1 RV2 RV3
NVD 2,598 151 143 74 36 33
oCERT 30 30 34 18 14 2
MFSA 103 77 77 77 0 0
ASF 234 59 59 59 0 0
TOTAL 2,965 299 313 228 50 35

Table 3.1 Recurring Software Vulnerabilities

3.3 Results and Implications

Table 3.1 summarizes the result of our study. Column Report shows the total number of vul-

nerability reports we collected and column Group shows the total number of groups of reports about

recurring vulnerabilities we manually analyzed in each database. Column RV is the number of identified

recurring vulnerabilities. The last three columns display the numbers for each type. The result confirms

our hypotheses H1 and H2: there exist many recurring vulnerabilities in different systems (see column

RV), and those vulnerabilities recur due to the reuse of source code (RV1), APIs/libraries (RV2), and

other artifacts at higher levels of abstraction, e.g. algorithms, specifications (RV3). Note that, each

group in oCERT contains only one report, however, each report in oCERT generally describes several

vulnerabilities, and many of them are recurring. Thus, the number in column RV is larger than that in

column Group.

The result also shows that the numbers of RV1s (source code-reused recurring vulnerabilities) and

RV2s (API-reused) are considerable. All vulnerabilities reported on Mozilla and Apache are RV1

because Mozilla and Apache are two frameworks on which the systems in analysis are developed.

Therefore, such systems share a large amount of code including vulnerable code fragments. Recurring

vulnerabilities of Type 3 (RV3s) are less than RV1s and RV2s partly because the chance that developers

make the same mistakes when implementing an algorithm might be less than the chance that they create

a flaw in source code or misuse libraries in similar ways. Moreover, the systems sharing designs or

algorithms might be not as many as the ones reusing source code and libraries.

Implications. The study confirms our hypotheses on recurring software vulnerabilities. Those

vulnerabilities are classified in three types based on the artifacts that their systems reuse. This finding

suggests that we could use the knowledge of prior known vulnerabilities in reported systems to detect
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and resolve not-yet-reported vulnerabilities recurring in other systems/releases that reuse the related

source code/libraries/algorithms, etc.

The study also provides some insights about the characteristics of vulnerable code of Types 1 and

2. While Type 1 vulnerable code is generally similar in texts and structure, Type 2 vulnerable code

tends to have similar method calls, and similar input checking and output handling before and after

such calls. Those insights are used in our detection and resolution of recurring vulnerabilities.

3.4 Threats to Validity

Public vulnerability databases used in our research could be incomplete because some of vulnera-

bilities are not disclosed or do not have patches available to the public yet. Since our empirical study is

based on the reported vulnerabilities with available patches, it results might be affected. Furthermore,

recurring vulnerabilities in our study are examined and identified by human beings. Therefore, the

result could be biased due to human subjective views and mistakes.
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CHAPTER 4. APPROACH OVERVIEW

We have developed SecureSync, an automatic tool to support the detection and resolution recom-

mendation for RV1s and RV2s. The tool builds a knowledge base of the prior known/reported vulner-

abilities and locates the vulnerable code fragments in a given system that are similar to the ones in its

knowledge base. The working process of SecureSync is illustrated in Figure 4.1.

Extracting vulnerability with
available patches

Sample vulnerable
and patched code

Source Code Parser

Knowledge Base

Database

Testing
Systems

Text-based 

Filtering

Source Code
Candidates

Source Code Parser

Report Vulnerable
Source Code

Recommending patches

Open Security

Vulnerability Database

Feature Extraction and 

Similarity Measurement

Candidate

xASTs and xGRUMs

Extracted 

xASTs and xGRUMs

Sample

xASTs and xGRUMs

Figure 4.1 SecureSync’s Working Process

In order to build the knowledge base, SecureSync searches for vulnerabilities with available patches

in Open Security Vulnerability Databases. The vulnerable and patched samples are then extracted and

stored in the Knowledge Base Database as xASTs and xGRUMs. When a testing system arrives,

SecureSync performs text-based filtering to keep only the source files related to sample vulnerabilities

(i.e similar identifiers/tokens). Then, these source files are parsed to build a set of xASTs and xGRUMs.

Given candidates X and samples Y as a set of xASTs and xGRUMs extracted from the testing system
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and the knowledge base respectively, SecureSync calculates the similarity between pairs of xASTs

(Type 1) and pairs of xGRUMs (Type 2) from X and Y and reports the candidates which are sufficiently

similar to the vulnerable sample and less similar to the corresponding patched one. SecureSync also

helps developers by pointing out the specific locations of vulnerable code and providing corresponding

patches derived from sample patches.

4.1 Problem Formulation

To build SecureSync, there are two main challenges: how to represent and measure the similarity

of RV1s and RV2s, and how to localize the recurring ones in different systems. In SecureSync, we

represent vulnerabilities via the features extracted from their vulnerable and patched code, and calculate

the similarity of those vulnerabilities via such features. Feature extraction and similarity measure

functions are defined differently for the detection of RV1s and RV2s, due to the differences in their

characteristics. The problem of detecting recurring vulnerabilities is formulated as follows.

Definition 1 (Feature and Similarity) Two functions F () and Sim() are called the feature extraction

and similarity measure functions for the code fragments. F (A) is called the feature set of a fragment

A. Sim(A,B) is the similarity measurement of two fragments A and B.

Definition 2 (Recurring Vulnerable Code) Given a vulnerable code fragment A and its correspond-

ing patched code A′. If a code fragment B is sufficiently similar to A and less similar to A′, i.e.

Sim(B,A) ≥ σ and Sim(B,A′) < Sim(B,A), then B is considered as a recurring vulnerable code

fragment of A. σ is a chosen threshold.

A and A′ could be similar because A′ is modified from A. Thus, B could be similar to both A and

A′. The second condition requires B to be more similar to vulnerable code than to patched code.

Definition 3 (Detecting Recurring Vulnerability) Given a knowledge base as a set of vulnerable and

patched code fragments K ={(A1, A
′
1), (A2, A

′
2), ..., (An, A

′
n)} and a program as a set of code frag-

ments P={B1, B2, ..., Bm}. Find fragment Bi(s) that is recurring vulnerable code of some fragment

Aj(s).
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4.2 Algorithmic Solution and Techniques

The general process for detection of RV1s and RV2s is illustrated in Figure 4.2. First, SecureSync

produces candidates fragments from the program P under investigation (line 2). Then, each candidate is

compared against vulnerable and patched code of the vulnerabilities in the knowledge base K to find the

recurring ones (lines 3-4). Detected vulnerabilities are reported to the users with the recommendation.

1 function Detect(P,K, σ) //detect recurring vulnerability
2 C = Candidates(P,K) //produce candidates
3 for each fragment B ∈ C: //check against knowledge base for recurring
4 if ∃(A,A′) ∈ K : Sim(B,A) ≥ σ ∧ Sim(B,A′) < Sim(B,A)
5 ReportAndRecommend(B)

Figure 4.2 Detection of Recurring Vulnerabilities

This algorithm requires the following techniques:

Feature Extraction and Similarity Measure. For RV1s, SecureSync uses a tree-based representa-

tion, called extended AST (xAST), that incorporates textual and structural features of code fragments.

The similarity of fragments is computed based on the similarity of such trees via Exas, an approach for

structural approximation and similarity measure of trees and graphs [44]. For RV2s, SecureSync uses

a novel graph-based representation, called xGRUM. Each code fragment is represented as a graph, in

which nodes represent function calls, variables, operators and branching points of control statements

(e.g. if, while); and edges represent control/data dependencies between nodes. With this, SecureSync

could represent the API usage information relevant to the orders of function calls, the checking of in-

put or handling of output of function calls. Then, the similarity of code fragments is measured by the

similarity of those xGRUMs based on their aligned nodes (Section 5).

Building Knowledge Base of Reported Vulnerabilities. We build the knowledge base for Se-

cureSync using a semi-automated method. First, we access to vulnerability databases and manually

analyze each report to choose vulnerabilities. Then, using code search, we find the corresponding vul-

nerable and patched code for the chosen vulnerabilities. We use SecureSync to automatically produce

corresponding xASTs and xGRUMs from those collected code fragments as their features. Note that,
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this knowledge building process could be fully automated if the vulnerability databases provide the

information on the vulnerable and corresponding patched code.

Producing Candidate Code Fragments. After having functions for feature extraction, similarity

measure, and the knowledge base, SecureSync produces code fragments from the program under in-

vestigation to find recurring vulnerable code using Definition 2. To improve the detection performance,

SecureSync uses a text-based filtering technique to keep for further processing only the files having

some tokens (i.e. words) identical or similar to the names of the functions in vulnerable code of the

knowledge base.

Recommending Patches. For Type 1 with the nature of source code reuse, the patch in the knowl-

edge base might be applicable to the detected vulnerable code with little modification. Thus, Se-

cureSync does recommendation by pointing out the vulnerable statements and the sample patch taken

from its knowledge base. For Type 2 with the nature of API usage, via its novel graph alignment al-

gorithm, SecureSync suggests the addition of missed function calls, or the checking of input/output

before/after calls, etc.
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CHAPTER 5. SOFTWARE VULNERABILITY DETECTION

5.1 Type 1 Vulnerability Detection

5.1.1 Representation

To detect Type 1 recurring vulnerabilities, SecureSync represents code fragments, including vul-

nerable and patched code in its knowledge base, via an AST-like structure, which we call extended AST

(xAST). An xAST is an augmented AST in which a node representing a function call, a variable, a lit-

eral, or an operator has its label containing the node’s type, the signature, the data type, the value, or the

token of the corresponding program entity. This labeling provides more semantic information for the

tree (e.g. two nodes of the same type of function call but different labels would represent different calls).

Figure 5.1 illustrates two xASTs of similar vulnerable statements in Figure 3.1 and Figure 5.2 repre-

sents the corresponding patch code. Two trees have mostly similar structures and nodes’ labels, e.g.

the nodes representing the function calls CanExecuteScripts, the variable of data type nsresult,

etc. Therefore, they similarly have the same patch. (For simplicity, the node types or parameter lists

are not drawn).

5.1.2 Feature Extraction and Similarity Measure

SecureSync considers feature set F (A) of a code fragment A is a set of xASTs, each represents

a statement of A. For example, vulnerable code fragments in Figure 3.1 have feature sets of sex and

eight xASTs, respectively. Then, the similarity of two fragments is measured via the similarity of

corresponding feature sets of xASTs.

SecureSync uses Exas [44] to approximate the xAST structures and measure their similarity. Using

Exas, each xAST or a set of xASTs T is represented by a characteristic vector of occurrence-counts of
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CanExecuteScripts
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Figure 5.1 xAST from Code in Figure 3.1 and Figure 3.2
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www.manaraa.com

23

its structural features Ex(T ). For trees, a structural feature is a sequence of labels of the nodes along a

limited length path. For example, both trees in Figure 5.1 has a feature [ASSIGN]-[nsresult] and a

feature [ASSIGN]-[CanExecuteScripts]-[PRBool].

The similarity of two fragments are measured based on the Manhattan distance of two correspond-

ing Exas vectors of their feature sets:

Sim(A,B) = 1− |Ex(F (A))− Ex(F (B))|
|Ex(F (A))|+ |Ex(F (B))|

(5.1)

This formula normalizes vector distance with the vectors’ sizes. Thus, with the same threshold for

similarity, larger trees, which have larger vectors, are allowed to have more different vectors.

5.1.3 Candidate Searching

A vulnerable code fragment of Type 1 generally scatters in several non-consecutive statements (see

Figure 3.1 and 3.2). Thus, traditional code clone detection techniques could not handle well such

similar, non-consecutive fragments. To address that and to find the candidates of such vulnerable code

fragments, SecureSync compares every statement of P to vulnerable code statements in its knowledge

base and merges such statements into larger fragments. To improve searching, SecureSync uses two

levels of filtering.

Text-based Filtering. Text-based filtering aims at filtering out the source files that do not have any

code textually similar to vulnerable code in the knowledge base. For each file, SecureSync does lexical

analysis, and only keeps the files that contain the tokens/words (e.g. identifiers, literals) identical or

similar to the names in the vulnerable code (e.g. function/variable names, literals). This text-based

filtering is highly effective. For example, in our evaluation, after filtering Mozilla Firefox with more

than 6,000 source files, SecureSync keeps only about 100 files.

Structure-based Filtering. Structure-based filtering aims at keeping only the statements that

potentially have similar xAST structures to the vulnerable ones in knowledge base. To do this, Se-

cureSync uses locality-sensitive hashing (LSH) [20]. LSH scheme provides the hash codes for the

vectors such that the more similar the two vectors are, the higher probability they would have the same

hash code [20]. SecureSync first parses each source file kept from the previous step into an xAST.



www.manaraa.com

24

Then, for each sub-tree representing a statement S in the file, it extracts an Exas feature vector Ex(S).

To check whether statement S is similar to a statement T in the knowledge base, SecureSync compares

LSH hash codes of Ex(S) with those of Ex(T ). If Ex(S) and Ex(T ) have some common LSH-hash

code, they are likely to be similar vectors, thus, S and T tend to have similar xAST structures. For faster

processing, every statement T of the vulnerable code in knowledge base is pre-hashed into a hashing

table. Thus, if a statement S does not share any hash code in that hash table, it will be disregarded.

Candidate Producing and Comparing. After previous steps, SecureSync has a set of candidate

statements that potentially have similar xAST structures with some statement(s) in vulnerable code in

its knowledge base. SecureSync now merges consecutive candidate statements into larger code frag-

ments, generally at the method level. Then, candidate code fragments will be compared to vulnerable

and patched code fragments in the knowledge base, using Definition 2 Section 4.1 and Formula 5.1.

Based on the LSH hash table, SecureSync compares each candidate B with only the code fragment(s)

A in the knowledge base that contain(s) the statements T s correspondingly having some common LSH

hash codes with the statements Ss of A.

5.1.4 Origin Analysis

When reusing source code, developers could make modifications to the identifiers/names of the

code entities. For example, the function ap proxy send dir filter in Apache HTTP Server 2.0.x

was renamed to proxy send dir filter in Apache HTTP Server 2.2.x. Because the features of

xASTs rely on names, such renaming could affect the comparison of code fragments in different sys-

tems/versions. This problem is addressed by an origin analysis process that provides the name mapping

between two versions of a system or two code-sharing systems. Using such mapping, when producing

the features of xASTs for candidate code fragments, SecureSync uses the mapped names, instead of

the names in the candidate code, thus, avoids the renaming problem. To map the names from such

two versions, currently, SecureSync uses an origin analysis technique in our prior work, OperV [47].

OperV models each software system by a project tree where each of its nodes corresponds to a program

element such as package, file, function, or statement. Then, it does origin analysis using a tree align-

ment algorithm that compares two project trees based on the similarity of the sub-trees and provides the
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mapping of the nodes. Using OperV, SecureSync knows the mapped entities thus, is able to produce

the name mapping that is used in feature extraction.

5.2 Type 2 Vulnerability Detection

5.2.1 Representation

Type 2 vulnerabilities are caused by the misuse or mishandling of APIs. Therefore, we emphasize

on API usages to detect such recurring vulnerabilities. If a candidate code fragment B has similar

API usages to a vulnerable code fragment A, B is likely to have a recurring vulnerability with A. In

SecureSync, API usages are represented as graph-based models, in which nodes represent the usages

of API function calls, data structures, and control structures, and edges represent the relations or con-

trol/data dependencies between them. Our graph-based representation for API usages, called Extended

GRaph-based Usage Model (xGRUM), is as follows:

Definition 4 (xGRUM) Each extended graph-based usage model is a directed, labeled, acyclic graph

in which:

1. Each action node represents a function or method call;

2. Each data node represents a variable;

3. Each control node represents the branching point of a control structure (e.g. if, for, while,

switch);

4. Each operator node represents an operator (e.g. not, and, or);

5. An edge connecting two nodes x and y represents the control and data dependencies between x

and y; and

6. The label of an action, data, control, and operator node is the name, data type, or token of the

corresponding function, variable, control structure, or operator, along with the type of the correspond-

ing node.

The rationale behind this representation is as follows. The usage of an API function or data structure

is represented as an action or data node. The order of two API function calls, e.g. x must be called

before y, is represented by an edge connecting the action nodes corresponding to the calls to x and
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b. Vulnerable API usage in NTP c. Patched API usage in NTPa. Vulnerable API usage in Gale

EVP_VerifyInit

EVP_MD_CTXEVP_VerifyUpdate

EVP_VerifyFinal

IF NOT

RETURNEVP_PKEY_freecrypto_i_error

FOR

EVP_VerifyInit

EVP_MD_CTXEVP_VerifyUpdate

EVP_VerifyFinal

IF NOT

EVP_PREY

EVP_md5 EVP_VerifyInit

EVP_MD_CTXEVP_VerifyUpdate

EVP_VerifyFinal

IF

RETURN

integer 0LEQ

Legends

action node

data node

control node

control dependency

data dependency

Figure 5.3 xGRUMs from Vulnerable and Patched Code in Figure 3.5

to y. The checking of input or output of API functions is modeled via the control and operator nodes

surrounding the action nodes of those function calls and via the edges between such control, operator

and action nodes.

Figure 5.3 partially shows three xGRUMs of two vulnerable code fragments in two figures 3.5 and

3.6 and one patched code fragment. (For better understanding, only the nodes/edges related to API

usages and the vulnerabilities are drawn). The xGRUMs have the action nodes representing function

calls EVP VerifyFinal, EVP VerifyInit, data node EVP MD CTX, control nodes IF, FOR, and oper-

ator nodes NOT, LEQ. An edge from EVP VerifyUpdate to EVP VerifyFinal represents both their

control dependency, (i.e. EVP VerifyUpdate is used before EVP VerifyFinal), and the data de-

pendency: those two nodes share data via data node EVP MD CTX. The edge between EVP MD CTX and

EVP VerifyFinal shows that the corresponding variable is used as an input for EVP VerifyFinal

(as well as an output, since the variable is a reference). The edge from action node EVP VerifyFinal

to control node IF shows the control dependency: EVP VerifyFinal is called before the branching

point of that if statement. That is, condition checking occurs after the call.

Especially, operator node NOT represents the operator in the control expression !EVP VerifyFinal(...).

It has control dependencies with two nodes EVP VerifyFinal and IF. In Figure 5.3c, the control

expression is modified into EVP VerifyFinal(...)<=. Thus, that operator node NOT is replaced

by the operator LEQ and the data node integer 0 is added for the literal value zero. A literal is
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modeled as a special data node, and its label is formed by its type and value. SecureSync models

only the literals of supported primitive data types (e.g. integer, float, char) and special val-

ues (e.g. 0, 1, -1, null, empty string). Prior work [24, 34] showed that bugs often occur at condi-

tion checking points of such special values. Currently, SecureSync uses intra-procedural data analy-

sis to find the data dependencies between graph nodes. For example, the data dependency between

EVP VerifyInit, EVP VerifyUpdate, and EVP VerifyFinal are found via their connections to

the data node EVP MD CTX.

5.2.2 Feature Extraction and Similarity Measure

Each vulnerable code fragment A is represented by an xGRUM G. Extracted features of A rep-

resent the nodes of G that are relevant to misused APIs. Note that, not all nodes in G is relevant

to the misused API functions. For example, in Example 2, only EVP VerifyFinal is misused,

EVP VerifyInit and EVP VerifyUpdate are correctly used. Thus, the feature of the vulnerabil-

ity should emphasize on the action node EVP VerifyFinal, operator node NOT, control node IF, and

data node EVP MD CTX, and of course, on the edges, i.e. the control and data dependencies between

such nodes.

For RV2s, features are extracted from the comparison between two xGRUMs representing the vul-

nerable and patched code, respectively. SecureSync finds the nodes related to misused APIs based on

the idea that: if some program entities are related to the bug, they should be changed/affected by the fix.

Since SecureSync represents program entities and dependencies via labels and edges, changed/affected

entities are represented by the nodes having different labels or neighborhoods, or being added/deleted.

That is, the unchanged nodes between two xGRUMs of the vulnerable and patched code represent the

entities irrelevant to API misuse. Thus, sub-graphs containing changed nodes of those two xGRUMs

are considered as features of the corresponding vulnerability. To find the changed and unchanged

nodes, SecureSync uses the following approximate graph alignment algorithm Figure 5.4.
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1 function Align(G,G′, µ) //align and differ two usage models
2 for all u ∈ G, v ∈ G′ //calculate similarity of all nodes.
3 if label(u) = label(v)
4 sim(u, v) = 1− |N(u)−N(v)|/(|N(u)|+ |N(v)|)
5 M = MaximumWeightedMatching(U,U ′, sim) //matching
6 for each (u, v) ∈ M :
7 if sim(u, v) < µ then M.remove((u, v)) //remove too low matches
8 return M

Figure 5.4 Graph Alignment Algorithm

5.2.2.1 Graph Alignment Algorithm

This algorithm aligns (i.e. maps) the nodes between two xGRUMs G and G′ based on their labels

and neighborhoods, then the aligned nodes could be considered as unchanged nodes and not affected

by the patch. The detailed algorithm is shown in Figure 5.4. For each node u into a graph, SecureSync

extracts an Exas vector N(u) to represent the neighborhood of u. The similarity of two nodes u ∈ G

and v ∈ G′, sim(u, v), is calculated based on the vector distance of N(u) and N(v) as in Formula 5.1

if they have the same label (see lines 2-4), otherwise they have zero similarity. Then, the maximum

weighted matching with such similarity as weights is computed (line 5). Only matched nodes with

sufficiently high similarity are kept (lines 6-7) and returned as aligned nodes (line 8).

5.2.2.2 Feature Extraction and Similarity Measure

Using that algorithm, SecureSync extracts features as follows. It first parses the vulnerable and

corresponding patched code fragments A and A′ into two xGRUMs G and G′. Then, it runs the graph

alignment algorithm to find the aligned nodes and considered them as unchanged. Unaligned nodes are

considered as changed, and the subgraphs formed by such nodes in G and G′ are put into the feature

sets F (A) and F (A′) for the current vulnerability.

Let us examine the code in Figure 3.5 and 3.6. Figure 5.3b and Figure 5.3c display the xGRUMs

G and G′ of vulnerable code and patched code fragments in NTP. The neighborhood structures of

two nodes labeled EVP VerifyInit in two graphs are identical, thus, they are 100% similar. The

similarity of two nodes labeled EVP VerifyFinal is less because they have different neighborhood

structures (one has a neighbor node NOT, one has LEQ). Therefore, after maximum matching, those
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two EVP VerifyInit nodes are aligned, however, the nodes EVP VerifyFinal and other nodes

representing operators NOT, LEQ and literal integer 0 are considered as changed nodes. Then, each

feature set F (A) and F (A′) contains the corresponding sub-graph with those changed nodes in gray

color in Figures 5.3b and 5.3c.

Similarity Measure. Given a code fragment B with the corresponding xGRUM H . SecureSync

measures the similarity of B against A in the database based on the usages of API functions that are

(mis)used in A and (re)used in B. To find such API usages, SecureSync aligns H and F (A) which

contains the changed nodes representing the entities related to the misused API functions in A. This

alignment also uses the aforementioned graph alignment algorithm with a smaller similarity threshold

µ because the difference between B and A might be larger than that of A′ and A.

Assume that the sets of aligned nodes are M(A) and M(B). SecureSync builds two xGRUMs

U(A) and U(B) containing the nodes in M(A) and M(B) as well as their dependent nodes and edges

in G and H , respectively. Since M(A) and M(B) contain the nodes related to API functions that are

(mis)used in A and are (re)used in B, U(A) and U(B) will represent the corresponding API usages in

A and in B. Then, the similarity of A and B are measured based on the similarity of U(A) and U(B):

Sim(A,B) = 1− |Ex(U(A))− Ex(U(B))|
|Ex(U(A))|+ |Ex(U(B))|

(5.2)

This formula is in fact similar to Formula 5.1. The only different is that Ex(U(A)) and Ex(U(B)) are

Exas vectors of two xGRUMs, not xASTs. In Figures 5.3a and 5.3b, M(A) and M(B) will contain

the action node EVP VerifyFinal, operator node NOT and control node IF. Then, U(A) and U(B)

will be formed from them and their data/control-dependent nodes, such as EVP VerifyInit, EVP

VerifyUpdate, and EVP MD CTX. In Figure 5.3a, nodes EVP PKEY free, FOR, EVP PKEY, and crypto i error

are also included in U(A). Their similarity calculated based on Formula 5.2 is 90%.

5.2.3 Candidate Searching

Similarly to the detection of RV1s, SecureSync uses origin analysis to find renaming of API func-

tions between systems and versions. Then, it also uses text-based filtering and set-based filtering to

keep only source files and xGRUMs that contain tokens and names similar to misused API functions

stored as the features in its database. After such filterings, SecureSync has a set of xGRUMs that
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potentially contain similarly misused API functions with some xGRUMs in the vulnerable code in its

database. Then, the candidate xGRUMs of code fragments are compared to xGRUMs of vulnerable

and patched code fragments in the database, using Definition 2 and Formula 5.2. Matched candidates

are recommended for patching.



www.manaraa.com

31

CHAPTER 6. EMPIRICAL EVALUATION

This chapter presents our evaluation of SecureSync on real-world software systems and vulnera-

bilities. The evaluation is separated into two experiments for the detection of type 1 and type 2 vul-

nerabilities. Each experiment has three steps: 1) selecting of vulnerabilities and systems for building

knowledge base, 2) investigating and running, and 3) analyzing results. Let us describe the details of

each experiment.

6.1 Evaluation of Type 1 Vulnerability Detection

Selecting. We chose three Mozilla-based open-source systems FireFox, Thunderbird and SeaMon-

key for the evaluation of type 1 vulnerabilities because they are actively developed and maintained, and

have available source code, security reports, forums, and discussions. First, we contacted and obtained

the release and branch history of those three systems from Mozilla security team. For each system, we

chose a range of releases that are currently maintained and supported on security updates, with the total

of 51 releases for three systems. The numbers of releases of each system is shown in column Release

of Table 6.1.

We aimed to evaluate how SecureSync uses the knowledge base of vulnerabilities built from the

reports in some releases of FireFox to detect the recurring ones in Thunderbird and SeaMonkey, and

also in different FireFox’s release branches in which those vulnerabilities are not reported yet. Thus, we

selected 48 vulnerabilities reported in the chosen releases of FireFox with publicly available vulnerable

code and corresponding patched code to build the knowledge base for SecureSync. In the cases that a

vulnerability occurred and was patched in several releases of FireFox, i.e., there were several pairs of

vulnerable and patched code fragments, we chose only one pair to build its features in the database.

Running. With the knowledge base of those 48 vulnerabilities, we run SecureSync on 51 chosen
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Systems Release DB SS X X X Miss
report report in DB new in DB

ThunderBird 12 21 33 19 11 3 2
SeaMonkey 10 28 39 26 10 3 2
FireFox 29 14 22 14 5 3 0
TOTAL 51 63 94 59 26 9 4

Table 6.1 Recurring Vulnerability Type 1 Detection Evaluation

releases. For each release, SecureSync reported the locations of vulnerable code (if any). We analyzed

those results and considered a vulnerability v to be correctly detected in a release r if either 1) v is

officially reported about r; or 2) the code locations of r reported by SecureSync have the same or highly

similar programming flaws to the vulnerable code of v. We also sent the reports from SecureSync to

Mozilla security team for their confirmation. We did not count the cases when a vulnerability is reported

on the release or branch from which the vulnerable and patched code are used in the database since a

vulnerability is considered recurring if it occurs on different release branches.

Analyzing. Table 6.1 shows the analysis result. There are 21 vulnerabilities which had been

officially reported by MFSA [8] and verified by us as truly recurrings on Thunderbird (see column DB

report). However, SecureSync reports 33 RV1s (column SS report). The manual analysis confirms

that 19 of them (see Xin DB) were in fact officially reported (i.e. coverage of 19/21 = 90%) and that

11 RV1s are not-yet-reported and newly discovered ones (see Xnew). Thus, three cases are incorrectly

reported (column X) and two are missed (Miss in DB), given the precision of 91% (30/33). The

results on SeaMonkey are even better: coverage of 93% (26/28) and precision of 92% (36/39). The

detection of RV1 on different branches of FireFox is also quite good: coverage of 100% (14/14) and

precision of 86% (19/22).

The result shows that SecureSync is able to detect RV1s with high accuracy. Most importantly,

it is able to correctly detect the total of 26 not-yet-reported vulnerabilities in three subject systems.

Figure 6.1 shows a vulnerable code fragment in Thunderbird 2.0.17 as an example of such not-yet re-

ported and patched vulnerabilities. Note that, this one is the same vulnerability presented in Example 1.

However, it is reported in CVE-2008-5023 for only FireFox and SeaMonkey and now it is revealed by

SecureSync on Thunderbird. Based on the recommendation from our tool, we had produced a patch
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PRBool nsXBLBinding::AllowScripts() {
...
JSContext* cx = (JSContext*) context->GetNativeContext();
nsCOMPtr<nsIDocument> ourDocument;
mPrototypeBinding->XBLDocumentInfo()->GetDocument(getter_AddRefs(ourDocument));

nsIPrincipal* principal = ourDocument->GetPrincipal();
if (!principal) return PR_FALSE;

PRBool canExecute;
nsresult rv = mgr->CanExecuteScripts(cx, principal, &canExecute);
return NS_SUCCEEDED(rv) && canExecute; ...

}

Figure 6.1 Vulnerable Code in Thunderbird 2.0.17

and sent it to Mozilla security team. They had kindly confirmed this programming flaw and our pro-

vided patch. We are waiting for their confirmation on other vulnerabilities reported by SecureSync and

corresponding patches that we built based on its fixing recommendation.

6.2 Evaluation of Type 2 Vulnerability Detection

Selecting. Out of 50 RV2s identified in our empirical study, some have no publicly available

source code (e.g. commercial software), and some have no available patches. We found available

patches (vulnerable and corresponding patched code) for only 12 RV2s and used all of them to build

the knowledge base for SecureSync in this experiment. For each of those 12 RV2s, if it is related to

an API function m, we used Google Code Search to find all systems using m and randomly chose

1-2 releases of each system from the result returned by Google Code Search (it could return several

systems using m, and several releases for each system). Some of those releases have been officially

reported to have the RV2s in knowledge base, and some have not. However, we did not select the

releases containing the vulnerable and patched code that we already used for building the knowledge

base. Thus, in total, we selected 12 RV2s, 116 different systems, with 125 releases for this experiment.

Running and Analyzing. The running and analyzing is similar to the experiment for RV1s. Ta-

ble 6.2 shows the analysis result. For example, there is an RV2 related to the misuse of two functions

seteuid and setuid in ftpd and ksu programs which “...do not check return codes for setuid calls,

which might allow local users to gain privileges by causing setuid to fail to drop privileges” (CVE-
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API function related System Release DB SS X X X Miss
to vulnerability report report in DB new in DB
seteuid/setuid 42 46 4 28 3 20 5 1
ftpd 21 23 0 19 0 12 7 0
gmalloc 10 10 3 10 3 7 0 0
ObjectStream 7 8 3 6 3 3 0 0
EVP VerifyFinal 7 8 5 7 5 2 0 0
DSA verify 7 8 3 8 3 4 1 0
libcurl 7 7 3 7 3 4 0 0
RSA public decrypt 5 5 1 5 1 4 0 0
ReadSetOfCurves 4 4 1 4 1 3 0 0
DSA do verify 3 3 1 2 0 2 0 1
ECDSA verify 2 2 0 2 0 2 0 0
ECDSA do verify 1 1 0 1 0 1 0 0
TOTAL 116 125 24 99 22 64 13 2

Table 6.2 Recurring Vulnerability Type 2 Detection Evaluation

2006-3084). We found 46 releases of 42 different systems using those two functions. 4 out of 46 are

officially reported in CVE-2006-3083 and CVE-2006-3084 (column DB report). In the experiment,

SecureSync reports 28 out of 46 releases vulnerable. Manually checking confirms 23/28 to be correct

and 5 are incorrect (giving precision of 82%). In the 23 correctly reported vulnerabilities, 3 are offi-

cially reported and 20 others are not-yet-reported. SecureSync missed only one officially reported case.

Similarly, for the RV2 related to API ftpd, it correctly detected 12 unreported releases and wrongly

reported on 7 releases. For other RV2s, it detects correctly in almost all releases.

Manual analyzing of all the cases that SecureSync missed, we found that they are due to the data

analysis. Currently, the implementation of data analysis in SecureSync is restricted to intra-procedural.

Therefore, it misses the cases when checking/handling of inputs/outputs for API function calls is pro-

cessed in different functions. For the cases that SecureSync incorrectly detected, we found the problem

is mostly due to the chosen threshold. In this experiment, we chose σ = 0.8. When we chose σ = 0.9,

for the RV2 related to ftpd, the number of wrongly detected cases reduces from 7 to 3, however, the

number of correctly detected cases also reduces from 12 to 10. However, the results still show that

SecureSync is useful, and it could be improved with more powerful data analysis.

Interesting Examples. Here are some interesting cases on which SecureSync correctly detected
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static int ssl3_get_key_exchange(s){
...
if (pkey->type == EVP_PKEY_DSA){
/* lets do DSS */
EVP VerifyInit(&md_ctx,EVP_dss1());
EVP VerifyUpdate(&md_ctx,&(s->s3->client_random[0]),SSL3_RANDOM_SIZE);
EVP VerifyUpdate(&md_ctx,&(s->s3->server_random[0]),SSL3_RANDOM_SIZE);
EVP VerifyUpdate(&md_ctx,param,param_len);
if (!EVP VerifyFinal(&md_ctx,p,(int)n,pkey)){
/* bad signature */
al=SSL3_AD_ILLEGAL_PARAMETER;
SSLerr(SSL_F_SSL3_GET_KEY_EXCHANGE,SSL_R_BAD_SIGNATURE);
goto f_err;

}
}
}

Figure 6.2 Vulnerable Code in Arronwork 1.2

gchar *g_base64_encode (const guchar *data, gsize len) {
gchar *out;
gint state = 0, save = 0, outlen;
g_return_val_if_fail (data != NULL, NULL);
g_return_val_if_fail (len > 0, NULL);

- g_malloc (len * 4 / 3 + 4);

+ if (len >= ((G_MAXSIZE - 1) / 4 - 1) * 3)
+ g_error("Input too large for Base64 encoding "...);

+ out = g_malloc ((len / 3 + 1) * 4 + 1);

outlen = g_base64_encode_step (data, len, FALSE, out, &state, &save);
outlen += g_base64_encode_close (FALSE, out + outlen, &state, &save);
out[outlen] = ’\0’;
return (gchar *) out;

}

Figure 6.3 Vulnerable and Patched Code in GLib 2.12.3

not-yet-reported RV2s. Figure 6.2 illustrates a code fragment in Arronwork having the same vulnera-

bility related to the incorrect usage of EVP VerifyFinal function as described in Chapter 3, and to the

best of our knowledge, it has not been reported anywhere. The code in Arronwork has different details

from the code in NTP (which we chose in building knowledge base). For example, there are different

variables and function calls, and EVP VerifyUpdate is called three times, instead of one. However,

it uses the same EVP protocol and has the same flaw. Using the recommendation from SecureSync

to change the operator and expression related to the function call to EVP VerifyFinal, we derived a

patch for it and reported this case to Arron’s developers.
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guchar * seahorse_base64_decode (const gchar *text, gsize *out_len) {
guchar *ret;
gint inlen, state = 0, save = 0;
inlen = strlen (text);
ret = g_malloc0 (inlen * 3 / 4);

*out_len = seahorse_base64_decode_step (text, inlen, ret, &state, &save);
return ret;

}

gchar * seahorse_base64_encode (const guchar *data, gsize len) {
gchar *out;
gint state = 0, outlen, save = 0;
out = g_malloc (len * 4 / 3 + 4);
outlen = seahorse_base64_encode_step (data, len, FALSE, out, &state, &save);
outlen += seahorse_base64_encode_close (FALSE, out + outlen, &state, &save);
out[outlen] = ’\0’;
return (gchar *) out;

}

Figure 6.4 Vulnerable Code in SeaHorse 1.0.1

Here is another interesting example. CVE-2008-4316 reported “Multiple integer overflows in

glib/gbase64.c in GLib before 2.20 allow context-dependent attackers to execute arbitrary code via

a long string that is converted either (1) from or (2) to a base64 representation”. The vulnera-

ble and patched code in GLib is in Figure 6.3, the new and removed code are marked with sym-

bols “+” and “-”, respectively. This vulnerability is related to the misuse of function g malloc

for memory allocation with a parameter that is unchecked against the amount of available memory

(len>=((G MAXSIZE-1)/4-1)*3)), and against an integer overflow in the expression (len*4/3+4).

Using this patch, SecureSync is able to detect a similar flaw in SeaHorse system in which two func-

tions base64 encoder and decoder incorrectly use g malloc and g malloc0 (see Figure 6.4). The

interesting point is that, the API function names in two systems are just similar, but not identical (e.g.

g malloc0 and g malloc, g base64 * and seahorse base64 *). Thus, the origin analysis infor-

mation SecureSync uses is helpful for this correct detection. Using the alignment between g malloc

and g malloc0 when comparing the graphs of two methods in Figure 6.4 with that of the method in

Figure 6.3, SecureSync correctly suggests the fixing by adding the if statement before the calls to

g malloc and g malloc0 functions, respectively.
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API-related Systems Releases SS report Correct Incorrect Precision
seteuid/setuid 42 46 28 23 5 82
gmalloc 10 10 12 11 1 92
ftpd 21 23 19 12 7 63
ObjectStream 7 8 6 6 0 100
EVP VerifyFinal 7 8 7 7 0 100
DSA verify 7 8 8 7 1 88
libcurl 7 7 7 7 0 100
RSA public decrypt 5 5 5 5 0 100
ReadSetOfCurves 4 4 8 8 0 100
DSA do verify 3 3 2 2 0 100
ECDSA verify 2 2 2 2 0 100
ECDSA do verify 1 1 1 1 0 100
Total 116 125 105 91 14

Table 6.3 Recurring Vulnerability Type 2 Recommendation

6.3 Patching Recommendation

SecureSync could suggest developers fixing code by applying the tree edit operations to transform

the xAST of buggy code into the patched one. As in Example 1 Section 3.2, after SecureSync detects

the recurring vulnerability in AllowScripts function in Thunderbird system, it compares two xASTs

of buggy and patched code to detect that the patch adds the function calls for privilege checking and a

change in the return statement. Therefore, it suggests to add GetHasCertificate() and Subsumes,

and to replace the return variable canExecute of the return statement with subsumes variable. For

Type 2, SecureSync provides the operations related to API function calls for developers to fix API

misuses. For example, in Figure 6.3 and Figure 6.4, SecureSync detects the changes in g malloc and

g malloc0 functions when comparing the graphs of two methods seahorse base64 decode and

seahorse base64 encode with that of g base64 encode method. It correctly suggests fixing by

adding the if statement before calling g malloc and g malloc0 functions.

Table 6.3 shows the recommendation result for type 2 vulnerabilities. For each testing system,

SecureSync not only checks whether it is vulnerable, but also point out the locations of vulnera-

ble code with proposed patches. For example, there is a vulnerability related to the misuse of API

ReadSetOfCurves. Among 4 releases of testing systems, SecureSync detect 8 locations (column SS
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report) containing vulnerable code. Manually checking confirms all of them correct (column Correct),

thus giving the precision 100% (column Precision).
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

This thesis reports an empirical study on recurring software vulnerabilities. The study shows that

there exist many vulnerabilities recurring in different systems due to the reuse of source code, APIs,

and artifacts at higher levels of abstraction (e.g. specifications). We also introduce an automatic tool

to detect such recurring vulnerabilities on different systems. The core of SecureSync includes two

techniques for modeling and matching vulnerable code across different systems. The evaluation on

real-world software vulnerabilities and systems shows that SecureSync is able to detect recurring vul-

nerabilities with high accuracy and to identify several vulnerable code locations that are not yet reported

or fixed even in mature systems. A couple of detected ones were confirmed by developers.

Future Work. We want to extend SecureSync approach to build a framework that incorporates

the knowledge from vulnerability reports and vulnerable source code to better detect recurring vul-

nerabilities. In detail, the core of SecureSync will include a usage model and a mapping algorithm for

matching vulnerable code across different systems, a model for the comparison of vulnerability reports,

and a tracing technique from a report to corresponding source code [50]. In other words, we will extend

SecureSync that:

1. Represents and compares the vulnerability reports to identify the ones that report the recur-

ring/similar vulnerabilities,

2. Traces from a vulnerability report to the corresponding source code fragment(s) in the codebase,

3. Represents and compares code fragments to find the ones that are similar due to code reuse or

similar in API library usages.

Figure 7.1 illustrates our framework. Given a system S1 with source code C1 and a known security

vulnerability reported by R1. The framework can support two following scenarios:
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Figure 7.1 The SecureSync Framework

Scenario 1. Given a system S2, one needs to determines whether S2 potentially has a recur-

ring/similar vulnerability as S1 and point out the potential buggy code C2. In the case that S2 is a

different version of S1, the problem is referred to as back-porting. In general, due the difference in the

usage contexts in two systems S1 and S2, the buggy code C1 and C2 might be different.

From R1, a vulnerability model M1 is built to describe the vulnerability of S1. Then, the trace from

R1 will help to find the corresponding source code fragments C1, which are used to extract the usage

model U1. If the tracing link is not available, SecureSync extends a traceability link recovery method,

called incremental Latent Semantic Indexing (iLSI) [33], that we developed in prior work. From usage

model U1, SecureSync uses its usage clone detection algorithm (will be discussed later) to find code

fragments C2 with the usage U2 similar to U1. Those C2 fragments are considered as potential buggy

code that could cause a recurring/similar vulnerability as in S1. The suggested patch for code in S2 is

derived from the comparison between U1 and its patched U ′
1. The change from U1 to U ′

1 will be applied

to U2 (which is similar to U1). Then, the concrete code will be derived to suggest the fix to C2.

Scenario 2.Provided that R2 is reported on S2, SecureSync compares vulnerability models ex-

tracted from security reports. First, SecureSync extracts M2 from R2 and then searches for a vulner-

ability model M1 in the security database that is similar to M2. If such M1 exists, SecureSync will
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identify the corresponding system S1, the patch, and then map the code fragments and recommend the

patch in the similar manner as in scenario 1.
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APPENDIX A. ADDITIONAL TECHNIQUES USED IN SECURESYNC

There are two techniques SecureSync used to calculate graph similarity and improve its perfo-

mance. It is Exas - an approach previously developed by us to approximate and capture structure

information of labeled graphs by vectors and measure the similarity of such graphs via vector distance.

SecureSync also uses the hashing technique called Locality Sensitive Hashing to filter labeled trees

with similar structure.

Exas: A Structural Characteristic Feature Extraction Approach

Structure-oriented Representation. In our structure-oriented representation approach, a software

artifact is modeled as a labeled, directed graph (tree is a special case of graph), denoted as G =

(V,E,L). V is the set of nodes in which a node represents an element within an artifact. E is the set of

edges in which each edge between two nodes models their relationship. L is a function that maps each

node/edge to a label that describes its attributes. For example, for ASTs, node types could be used as

nodes’ labels. For Simulink models, the label of a node could be the type of its corresponding block.

Other attributes could also be encoded within labels. In existing clone detection approaches, labels for

edges are rarely explored. However, for general applicability, Exas supports the labels for both nodes

and edges.

Figure A.1 shows an illustrated example of a Simulink model, its representation graph and two

cloned fragments A and B.

Structural Feature Selection. Exas focuses on two kinds of patterns of structural information of

the graph, called (p, q)-node and n-path.

A (p, q)-node is a node having p incoming and q outgoing edges. The values of p and q associated

to a certain node might be different in different examined fragments. For example, node 9 in Figure A.1
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Figure A.1 The Simulink Model and Graph Representation

is a (3,1)-node if entire graph is currently considered as a fragment, but is a (2,0)-node if fragment A is

examined.

An n-path is a directed path of n nodes, i.e. a sequence of n nodes in which any two consecutive

nodes are connected by a directed edge in the graph. A special case is 1-path which contains only one

node.

Structural feature of a (p, q)-node is the label of the node along with two numbers p and q. For

example, node 6 in fragment A is (2, 1)-node and gives the feature mul-2-1. Structural feature of an

n-path is a sequence of labels of nodes and edges in the path. For example, the 3-path 1-5-9 gives the

feature in-gain-sum. Table A.1 lists all patterns and features extracted from A and B. It shows that

both fragments have the same feature set and the same number of each feature. Later, we will show

that it holds for all isomorphic fragments.

Characteristic Vectors. An efficient way to express the property “having the same or similar

features” is the use of vectors. The characteristic vector of a fragment is the occurrence-count vector

of its features. That is, each position in the vector is indexed for a feature and the value at that position is

the number of occurrences of that feature in the fragment. Table A.2 shows the indexes of the features,

which are global across all vectors, and their occurrence counts in fragment A.

Two fragments having the same feature sets and occurrence counts will have the same vectors and

vice versa. The vector similarity can be measured by an appreciably chosen vector distance such as
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Pattern Features of fragment A Features of fragment B
1-path 1 2 5 6 9 4 3 8 7 11

in in gain mul sum in in gain mul sum
2-path 1-5 1-6 2-6 6-9 5-9 4-8 4-7 3-7 7-11 8-11

in-gain in-mul in-mul mul-sum gain-sum in-gain in-mul in-mul mul-sum gain-sum
3-path 1-5-9 1-6-9 2-6-9 4-8-11 4-7-11 3-7-11

in-gain-sum in-mul-sum in-mul-sum in-gain-sum in-mul-sum in-mul-sum
(p,q)-node 1 2 5 4 3 8

in-0-2 in-0-1 gain-1-1 in-0-2 in-0-1 gain-1-1
(p,q)-node 6 9 7 11
(continued) mul-2-1 sum-2-0 mul-2-1 sum-2-0

Table A.1 Extracted Patterns and Features

Feature Index Counts Feature Index Counts Feature Index Counts Feature Index Counts
in 1 2 in-gain 5 1 in-gain-sum 9 1 gain-1-1 13 1
gain 2 1 in-mul 6 2 in-mul-sum 10 2 mul-2-1 14 1
mul 3 1 gain-sum 7 1 in-0-1 11 1 sum-2-0 15 1
sum 4 1 mul-sum 8 1 in-0-2 12 1

Table A.2 Feature Indexing and Occurrence Count

1-norm distance.

In the Table A.2, based on the occurrence counts of features in fragment A, the vector for A is

(2,1,1,1,1,2,1,1,1,2,1,1,1,1,1).

LSH: Locality Sensitive Hashing

A locality-sensitive hashing (LSH) function is a hash function for vectors such that the probability

that two vectors having a same hash code is a strictly decreasing function of their corresponding dis-

tance. In other words, vectors having smaller distance will have higher probability to have the same

hash code, and vice versa. Then, if we use locality-sensitive hash functions to hash the fragments into

buckets based on the hash codes of their vectors, fragments having similar vectors tend to be hashed

into same buckets, and the other ones are less likely to be so.

The vector distance used in SecureSync for similarity measure is Manhattan distance. Therefore,

it uses locality-sensitive hash functions for l1 norm. The following family H of hash functions was

proved to be locality-sensitive for Manhattan distance:

h(u) = ⌊a.u+ b

w
⌋

In this formula, a is a vector whose elements are drawn from Cauchy distribution; w is a fixed

positive real number; and b is a random number in [0, w]. Common implementations choose w = 4.
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If ∥u− v∥ = l then

Pr(l) = Pr[h(u) = h(v)] =

∫ w

0

2.e−(x
l
)2

l.
√
2π

(1− x

w
)dx

Pr(l) is proved to be a decreasing function of l [20]. Then, for l ≤ δ, we have Pr(l) ≤ p = Pr(δ).

Therefore, for any two vectors u, v that ∥u− v∥ ≤ δ, Pr[h(u) = h(v)] ≤ p . That means, they have a

chance at least p to be hashed into a same bucket.

However, two distant points also have a chance at most p to be hashed into a same bucket. To reduce

that odds, we could use more than one hash functions. Each hash function h used in SecureSync is a

tuple of k independent hash functions of H: h = (h1, h2, ..., hk). That means hashcode of each vector

u will be a vector of integers h(u) = (h1(u), h2(u), ..., hk(u)), with each corresponding integer index

for such a vector hashcode is calculated as follows:

h(u) =
k∑

i=1

ri.hi(u) mod P

where each ri is a randomly chosen integer and P is a very large prime number. In SecureSync, we use

a 24 bit prime number.

We call this kind of hash functions as k-line functions. Then, two distant vectors having the same

vector hashcode if all of the member hashcodes are the same, and the probability of this event is q ≤ pk.

The corresponding probability for two similar vectors is p ≥ pk.

Since the chance for similar vectors be hashed to the same buckets reduces, SecureSync uses N

independent k-hash functions, and each vector is hashed to N corresponding buckets. Then, if u and

v are missed by a hash function, they still have chances from the others. Indeed, the probability that u

and v are missed by all those N functions, i.e. having all different hash codes is (1−p)N ≤ (1−pk)N .

If N is large enough, this probability approaches to zero, i.e. u and v are hashed into at least the same

bucket with a high probability.
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